CME 194 Introduction to MPI

Inchoare Commercio & Rebus Iniuriam
http://cmel194.stanford.edu

* Last class: Saw the Basics
— Solve problems with ideal parallelism
(massively parallel problems)

 Bad News: Sadly world isn’t perfect
— Processors need to communicate

* Good news: Distributed algorithms are interesting
— We can attack more interesting problems

Simplest Example

* Two processes

* One process sends an integer to the other process.

Dear Processor 1,
Here is the integer 7.
Best, Processor 0

int MPI Send(void* buf, int count,
MPI Datatype datatype, int dest,
int tag, MPI Comm comm)

* buf Initial address of send buffer.

* count Number of elements send (nonnegative integer).
« datatype Datatype of each send buffer element (handle).
* dest Rank of destination (integer).

e tag Message tag (integer).

e comm Communicator (handle).

int MPI Recv(void* buf, int count,
MPI Datatype datatype, int source,
int tag, MPI Comm comm,
MPI Status* status)

* buf Initial address of send buffer.

* count Number of elements send (nonnegative integer).

» datatype Datatype of each send buffer element (handle).

* source Rank of source (integer) (or use MPI_ANY_SOURCE)

* tag Message tag (integer) (or use MPI_ANY_TAG)
e comm Communicator (handle)

* status Structure containing with message information

(or use MPI_STATUS_IGNORE)

Basic MPIl Datatypes

MPI datatype C datatype
MPI_CHAR char
MPI_SHORT short int

Learn to send structs and classes:

Lecture 4

unsigned
MPI_UNSIGNED_LONG_LONG int

MPI_FLOAT float
MPI_DOUBLE double
MPI_LONG_DOUBLE long double
MPI BYTE char

13 std::size_t the_number_seven=1;

14 if(rank == 0){

15 the_number_seven=7,

16 MPI_Send(&the_number_seven, 1, MPI_INT, 1, @, MPI_COMM_WORLD);
17 std: :cout << "@: has returned from the send." << std::endl;

18 } else {

19 MPI_Status status;

20 std::cout << rank << ": the_number_seven is at first "

21 << the_number_seven << std::endl;

22 MPI_Recv(&the_number_seven, 1, MPI_INT, @, @&, MPI_COMM_WORLD, &status);
23 std::cout << "1: has returned from the receive." << std::endl;

24 std: :cout << rank << ": the_number_seven 1s now equal to
25 << the_number_seven << std::endl;

26 }

n

Details
e Each Send must be matched with a Recv.

* Messages are delivered in the order sent.
* Unmatched sends/receives may result in deadlock

Contains:
 rank of sender useful with MPI_ANY_SOURCE

« tag of message Useful with MPI_ANY_TAG

* error code
* message length since we can receive larger data than we need

Given a valid Status object we may do:

[MPI_Get_count(MPI_Status™ status, MPIl_Datatype datatype, int* count) }

To extract the length.

Wait! Better to get this data *before™ message?

LMPI_Probe(int source, int tag, MPI_Comm comm, MPI_Status* status)}

* Check for incoming messages without actual receipt of them.
» Useful for receiving messages of dynamic type and size

MPI_Status status;

MPI_Probe(@, 0, MPI_COMM_WORLD, &status);

MPI_Get_count(&status, MPI_INT, &number_amount);

int* number_buf = (int*)malloc(sizeof(int) * number_amount);

MPI_Recv(number_buf, number_amount, MPI_INT, @, @, MPI_COMM_WORLD,
MPI_STATUS_IGNORE);

Receive()

Receive()

Receive()

Recieve()

>

<

}

Input: Array of n integers divided across p machines.
Problem: Sort the total array quickly with constant extra space

* Parallel Merge/quick-sort require too much communication

Solution: Bitonic Sort!
Bitonic sequence:
- Is first increasing and then decreasing

Idea:
First: Turn sequence into a bitonic one
Second: Then do reverse “quicksort”-like recursion

Application: Bitonic Sorting

Step O: Look, lots of small bitonic sequences!

L e e e
93 3 4 47 1 2 6 42

Step 1: Want bigger bitonic sequences like this:

8 93 47 4 1 2 42 6
AN Ve

Step 2: - Repeat - Compare & Recurse
3 4 47 93 42 6 1 2
N . S N\

4";

4 3 47 93 42 6 2 1

Application: Bitonic Sorting

Great, bitonic sequence? Now we do shifted compare/swap

4";

47 93 42 6 2 1
%

Recurse, left and right half, now partially ordered.

2 1 42 8 47 93

4 8
¢

4 6

¢t 1

2 1

t 1 ¢
1 2

4 6 42 8 47 93
|

4 6 3 42 47 93

Psuedocode: Bitonic Sorting

Let § — <SO7 817 ooy Sn_1> such that

S0 X851 X ...8,/2-1 and Sn/2 = Sp/241 S -0 S Sp—

Notice that these two lists are bitonicand [; < [5
[y = (min(sg, $p,/2), min(s1, Sp/241), - .- MiN(Sy /21, Sp—1))
[= <max(30, 3n/2)7 ma,X(Sl, Sn/2+1), .o -maX(Sn/2—1a Sn—1)>

- Recurse on these lists.

O(n log2 (1)) serial time complexity

- When implemented in parallel not much extra space needed

Application: Bitonic Sorting

Homework #1
Last Problem: Implement Bitonic Sort

Ken Batcher’s Hint:
Try to use a special point to point primitive

Ken Batcher

Discovered Bitonic Sort in 1968

Ken Batcher’s Hint

int MPI Sendrecv(void* sendbuf, int sendcount,
MPI Datatype sendtype, int dest,
int sendtag,
void* recvbuf, int recvcount,
MPI Dataype recvtype, int source,
int recvtag,
MPI Comm comm, MPI Status* status)

* Simultaneous send and receive
* There is a version called MPI_sendrecv_replace
which reuses one of the buffers.

Communication Modes

* There are different ways to send messages in MPI.

* They are:
— Blocking vs. nonblocking,
— Synchronous vs. asynchronous
— Buffered vs. unbuffered

e We will see all of this in Lecture 5.

Suppose we had this situation:

MPI_Send(..., 1 MPI_COMM_WORLD);

MPI_Recv(..., 1 MPI_COMM_WORLD, &status);
se 1f (rank 1

MPI_Send(..., @ MPI_COMM_WORLD);

MPI_Recv(..., © MPI_COMM_WORLD, &status);

Deadlocks

Suppose we had this situation:

“When two trains approach each other at a crossing, both shall
come to a full stop and neither shall start up again until the other has
gone.”
~ Kansas Legislature Early 20t century.

}\ A \ (1)

. . W '4
Dealing with Bugs AHE

* Quick review of serial debugging
— Examine your source code for errors

— Add enough debugging (print) statements to your output
— Use a symbolic debugger (gdb)

— Find bugs, fix, and repeat.

— Testing, early and often.

“It can be virtually impossible to predict the behavior of an erroneous program.”

Trying to receive data before sending in an
exchange

Trying to receive data with an unmatched send
Incorrect send/receive parameters

Code which depends on implementation not
standard
— Different systems means different errors

Code works with n cores but not n+1

Words of wisdom

“Many (if not most) parallel program bugs have nothing
to do with the fact that the program is parallel.

Infact, most bugs are caused by the same mistakes that
Cause serial program bugs.”

Parallel Debugging

e Use all the techniques of serial debugging!
— Examine your source code for errors

— Add enough debugging (print) statements to your
output

— Use a symbolic debugger
— Find bugs, fix, and repeat.

Wait, how does one use a debugger with many processes?
.... On different computers?
Nonfree debuggers exist.

e Two popular options are:

— Totalview by Roguewave

— and Allinea DDT.
* You all may evaluate the latter on ICME’s MPI cluster.
e http://www.allinea.com/products/downloads
 Download the remote clients for Mac OS X of Windows.

* | believe Linux users may use the regular DDT as
a remote client.

Recommendation: Use SSH Public Key for Cluster Access

[MPI_Errhandler_set(MPI_Comm comm MPI_Errhandler handler) }

* Error Handlers are functions to which control
is transferred to in the event of an error condition

 MPI Standard Defines two:
— MPI_ERRORS_ARE_FATAL - program crashes on error
— MPI_ERRORS _RETURN -2 error codes returned

* The latter is good to use with

[MPI_Error_string(int errorcode, char™ string, int™* resultlen) }

i

char error_message[MPI_MAX_ERROR_STRING];

1nt message_length;
error_code = MPI_Send(...);

if (error_code != MPI_SUCCESS){

MPI_Error_string(error_code, error_message, &me
ssage_length);

std::cerr << "Error in send: " << error_message

<< std::endl;
MPI_Abort(MPI_COMM_WORLD, -1);

}

Homework 1 & Stuff to debug

* Homework 1 is now available

* |'ve put some programs which need fixing up
as well.

