CME 194 Introduction to MPI

Essentia Callidus
http://cmel194.stanford.edu

e Last class: Communicators & Derived Datatypes
— Communication between arbitrary subsets of processes

— Grid style communication

— Communicate arbitrary messages

* This class: Point to Point Communication improved
— Improving Send & Receive

Proc O Proc 1 Proc 2 Proc 3

Reminder: Send & Receive

Receive()

Recieve()

S

<

}

int MPI Send(void* buf, int count,
MPI Datatype datatype, int dest,
int tag, MPI Comm comm)

int MPI Recv(void* buf, int count,
MPI Datatype datatype, int source,
int tag, MPI Comm comm,
MPI Status* status)

Details
e Each Send must be matched with a Recv.

* Messages are delivered in the order sent.
* Unmatched sends/receives may result in deadlock

Deadlocks

Deadlock(?

Deadlocks

Deadlock(?

Recv() Recv()
Send() Send()

Deadlocks

Deadlock(?

Recv() Recv() Always
Send() Send()

Deadlocks

Deadlock(?

Recv() Recv() Always
Send() Send()
Send() Send()

Recv() Recv()

Deadlocks

Deadlock(?

Recv() Recv() Always
Send() Send()
Send() Send() Depends on library

Recv() Recv()

Deadlocks

Deadlock(?

Recv() Recv() Always

Send() Send()

Send() Send() Depends on library
Recv() Recv()

Send() Recv()

Recv() Send()

Deadlocks

Deadlock(?

Recv() Recv() Always

Send() Send()

Send() Send() Depends on library
Recv() Recv()

Send() Recv() Safe

Recv() Send()

Deadlocks

Deadlock(?)

Recv() Recv() Always

Send() Send()

Send() Send() Depends on library
Recv() Recv()

Send() Recv() Safe

Recv() Send()

The MPI Implementation decides if a standard Send() is buffered or not

Send and buffering

Unbuffered send

Wait idly by
until we receive
an
“ok to send”

Time

continue

program

Note:

No guarantee
other process
has received

Time

Buffered send

Send()
Message copied
to buffer

continue
program

System

sends
message

The MPI Implementation decides if a standard Send() is buffered or not

Communication Modes

Various communication modes for point to point
* Blocking (vs. non-blocking e.g immediate)

e Buffered (vs. unbuffered)

* Synchronous (vs. asynchrous)

 Ready mode

Some imply others:
 Unbuffered implies blocking

* We may force the system to buffer messages:

P
int MPI Bsend(void* msg, int count,

MPI Datatype datatype, int dest,
_ int tag, MPI Comm comm)

requires explicitly providing a block of memory for the buffer

int MPI Buffer attach(void* buf, int size)
int MPI Buffer detach(void* buf, int size)

This is usually a bad idea
* Error prone (what if no space?)

* Fly’s in face of goal (doubling memory for messages)
 May be unneeded (what if we know receive is posted?)
* Better techniques exist.

* Note: MPI_Brecv() makes no sense

Process0 |Process1 | Deadlock(?)
Recv() Recv() Always
Send() Send()

Send() Send() Depends on library
Recv() Recv()

Send() Recv() Safe

Recv() Send()

* Deadlocks may be result of inexpressibility of the language
* Example: Replace Example 1 above with:
* Receives which return immediately

4)
MPI Irecv(void* msg, int count,

MPI Datatype datatype, int source,

int tag, MPI Comm comm, MPI Request* req)/

Time

Non-blocking Receive

Blocking Receive

Wait idly by
until we receive
message

A Continue program

Time

Non-blocking Receive

continue

program

v Wait if message not
here

Time

Non-blocking Send

Un-buffered blocking send

Wait idly by
until we receive
an
“ok to send”

continue

program

Time

Non-blocking send

continue
program

Wait for send
v
to complete

System
sends

message

MPI Isend(void* msg, int count,
MPI Datatype datatype, int dest,
int tag, MPI Comm comm, MPI Request* req)

MPI Irecv(void* msg, int count,
MPI Datatype datatype, int source,
int tag, MPI Comm comm, MPI Request* req)

* Sends are receive calls return immediately
* QOperation was not necessarily successful

* Send may be asynchronous

* Send may be synchronous

e Data was not necessarily buffered

May explicitly block via:

[MPI_Wait(MPI_Request* req, MPI Status* status)

MPI Isend(void* msg, int count,
MPI Datatype datatype, int dest,
int tag, MPI Comm comm, MPI Request* req)

MPI Irecv(void* msg, int count,
MPI Datatype datatype, int source,
int tag, MPI Comm comm, MPI Request* req)

Sends are receive calls return immediately
Operation was not necessarily successful

May explicitly block via:

[MPI_Wait(MPI_Request* req, MPI Status* status)

MPI TIbsend(void* msg, 1int count,
MPI Datatype datatype, int dest,
int tag, MPI Comm comm, MPI Request* req)

MPI TIbrecv() makes no sense.

Sends are receive calls return immediately
Operation was not necessarily successful

Data was-net necessarily buffered

[MPI_Wait(MPI_Request* req, MPI Status* status)

* Want a guarantee:
e after send returns receiving has began
 MPI_Srecv() makes no sense.

MPI Ssend(void* msg, int count,
MPI Datatype datatype, int dest,
int tag, MPI Comm comm)

Useful for guaranteeing process has gotten to a certain stage of program.

It is perfectly reasonable to have a non-blocking equivalent:

MPI Issend(void* msg, 1int count,
MPI Datatype datatype, int dest,
int tag, MPI Comm comm, MPI Request#*

req)

Synchronous communication

Synchronous blocking send Non-blocking Synchronous send

Wait until
receiver begins
receiving

continue
program

Time
Time

continue Wait for receiver

program

to begin
receiving

What if we know that the receiver is ready to receive already?

If we know that the receiver is ready to receive already?

Example:
Irecv() followed immediately by Ssrecv()

We may optimize the internal send with:

MPI Rsend(void* msg, int count,
MPI Datatype datatype, int dest,
int tag, MPI Comm comm)

MPI Irsend(void* msg, 1int count,
MPI Datatype datatype, int dest,
int tag, MPI Comm comm, MPI Request* req)

Rest of lecture

e Volunteers for Lecture 8
e Work on homeworks!

e Volunteers for Lecture 8
e Work on homeworks!

Guest Lecture: Rob Schreiber from H.P. Labs on High Performance MPI software

